Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel.

نویسندگان

  • Ricardo De La Fuente
  • Wan Namkung
  • Aaron Mills
  • A S Verkman
چکیده

Calcium-activated chloride channels (CaCCs) are widely expressed in mammalian tissues, including intestinal epithelia, where they facilitate fluid secretion. Potent, selective CaCC inhibitors have not been available. We established a high-throughput screen for identification of inhibitors of a human intestinal CaCC based on inhibition of ATP/carbachol-stimulated iodide influx in HT-29 cells after lentiviral infection with the yellow fluorescent halide-sensing protein YFP-H148Q/I152L. Screening of 50,000 diverse, drug-like compounds yielded six classes of putative CaCC inhibitors, two of which, 3-acyl-2-aminothiophenes and 5-aryl-2-aminothiazoles, inhibited by >95% iodide influx in HT-29 cells in response to multiple calcium-elevating agonists, including thapsigargin, without inhibition of calcium elevation, calcium-calmodulin kinase II activation, or cystic fibrosis transmembrane conductance regulator chloride channels. These compounds also inhibited calcium-dependent chloride secretion in T84 human intestinal epithelial cells. Patch-clamp analysis indicated inhibition of CaCC gating, which, together with the calcium-calmodulin data, suggests that the inhibitors target the CaCC directly. Structure-activity relationships were established from analysis of more than 1800 analogs, with IC(50) values of the best analogs down to approximately 1 muM. Small-molecule CaCC inhibitors may be useful in pharmacological dissection of CaCC functions and in reducing intestinal fluid losses in CaCC-mediated secretory diarrheas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ani9, A Novel Potent Small-Molecule ANO1 Inhibitor with Negligible Effect on ANO2

Anoctamin1 (ANO1)/transmembrane protein 16A (TMEM16A), a calcium-activated chloride channel (CaCC), is involved in many physiological functions such as fluid secretion, smooth muscle contraction, nociception and cancer progression. To date, only a few ANO1 inhibitors have been described, and these have low potency and selectivity for ANO1. Here, we performed a high-throughput screening to ident...

متن کامل

Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction.

Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on...

متن کامل

Microfluidics platform for single-shot dose-response analysis of chloride channel-modulating compounds.

We previously developed cell-based kinetics assays of chloride channel modulators utilizing genetically encoded yellow fluorescent proteins. Fluorescence platereader-based high-throughput screens yielded small-molecule activators and inhibitors of the cAMP-activated chloride channel CFTR and calcium-activated chloride channels, including TMEM16A. Here, we report a microfluidics platform for sin...

متن کامل

The Cdc42 inhibitor secramine B prevents cAMP-induced K+ conductance in intestinal epithelial cells.

Cyclic AMP- (cAMP) and calcium-dependent agonists stimulate chloride secretion through the coordinated activation of distinct apical and basolateral membrane channels and ion transporters in mucosal epithelial cells. Defects in the regulation of Cl- transport across mucosal surfaces occur with cystic fibrosis and V. cholerae infection and can be life threatening. Here we report that secramine B...

متن کامل

Effects of Small Molecule Calcium-Activated Chloride Channel Inhibitors on Structure and Function of Accessory Cholera Enterotoxin (Ace) of Vibrio cholerae

Cholera pathogenesis occurs due to synergistic pro-secretory effects of several toxins, such as cholera toxin (CTX) and Accessory cholera enterotoxin (Ace) secreted by Vibrio cholerae strains. Ace activates chloride channels stimulating chloride/bicarbonate transport that augments fluid secretion resulting in diarrhea. These channels have been targeted for drug development. However, lesser atte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 73 3  شماره 

صفحات  -

تاریخ انتشار 2008